
Agile manifesto:

We are uncovering better ways of developing software by doing it and helping others do it. Through

this work we have come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Some of the 12 agile principles:

• Working software is the primary measure of progress.

• Deliver working software frequently, from a couple of weeks to a couple of months, with a

preference to the shorter timescale.

o Scrum - Sprints

• The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

o Make wait time visible

▪ Wait time = busy time /idle time e.g. 50%/50% = 1hr wait time; 90%/10%

9hrs of wait time

▪ Everyone needs idle time otherwise work gets stuck in queues.

• At regular intervals, the team reflects on how to become more effective, then tunes and

adjusts its behaviour accordingly.

o Sensei Mike Rother – It doesn’t matter what you improve, as long as you’re

improving something. Because if you’re not improving, entropy guarantees that you

are getting worse.

o Habits – Repetition creates habits and habits are what enables mastery.

o Continually put tension into the system so we’re continually reinforcing habits.

▪ Resilience engineering tells us that we should routinely inject faults into the

system doing them frequently, to make them less painful.

Others:

Technical debt:

• A concept in SD that reflects the implied cost of additional rework caused by choosing an

easy(limited) solution now instead of using a better approach that would take longer.

• Unaddressed technical debt increases software entropy

Context switching /Multi-tasking

• Ensure the fast, predictable, and uninterrupted flow of planned work that delivers value to

the business while minimising the impact and disruption of unplanned work.

References:

The Phoenix Project

Scrum: Doing twice the work in half the time

The Culture Code

